It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Currently, energy generation industry transition to a new technological platform based on smart electrical energy systems (EES) is underway, with EES equipped with active-adaptive mains. This platform involves a large-scale use of digital devices and significant electrical energy (EE) generation using distributed generation (DG) plants which are to be created by power consumers. These plants can operate as parts of existing grids, or be pooled in network clusters. To implement smart EES, the development of new approaches is required for production, distribution and EE consumption modes management. The article is dedicated to the issues of DG plants application to raise efficiency of non-traction consumers power supply systems. In this case, a special attention was paid to enhancing the electrical energy quality via application of the DG plant which is controlled by concordantly set generator automatic voltage regulator (AVR) and automatic speed governor (ASG). For optimization and harmonization of AVR and ASG settings a method of nonparametric identification of the ‘turbine-generator’ system was used which can be represented as complex activation functions of main channels and crosslinks of regulators and the generator. The study was carried out in Matlab environment on a created railroad power supply system model. The studies conducted helped to detect that application of DG plants with concordantly set AVR and ASG makes it possible to enhance power quality for non-traction consumers and ensure dynamic stability and resilience of railroad line power supply system.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer