Abstract

The advanced oxidation processes (AOPs) play an important role in the degradation of hardly decomposable organic pollutants. AOPs methods rely on the production of highly reactive hydroxyl OH• radicals. The aim of the conducted research was to intensify biogas production in the methane fermentation process of excess sludge subjected to the process of deep oxidation with Fenton's reagent. In the process of oxidation of sewage sludge with the Fenton reagent, doses of iron ions in the range 0.02–0.14 g Fe2+/g TS (total solids) were used Hydrogen peroxide was measured in the proportions 1: 1–1:10 in relation to the mass of iron ions. The basic substrate of the study was excess sludge. In the case of excess sludge oxidation with the use of Fenton's reagent, the most favorable process conditions were considered to be the dose of iron ions 0.08 g Fe2+/g d.m. and a Fe2+: H2O2 ratio of 1:5. As a result of subjecting the excess sludge to disintegration with the Fenton reagent in the above-mentioned dose, with respect to the fermentation process of unprocessed sludge, about two-fold increase in the digestion degree of excess sludge and about 35% increase of the biogas yield was obtained.

Details

Title
Biogas production in the methane fermentation of excess sludge oxidized with Fenton’s reagent
Author
Zawieja, Iwona; Brzeska, Kinga
Publication year
2019
Publication date
2019
Publisher
EDP Sciences
ISSN
25550403
e-ISSN
22671242
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2301957574
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.