Full Text

Turn on search term navigation

© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The southeastern Amazon region has been intensively occupied by human settlements over the past three decades. To evaluate the effects of human settlements on land-cover and land-use (LCLU) changes over time in the study site, we evaluated multitemporal Landsat images from the years 1984, 1994, 2004, 2013 and Sentinel to the year 2017. Then, we defined the LCLU classes, and a detailed “from-to” change detection approach based on a geographic object-based image analysis (GEOBIA) was employed to determine the trajectories of the LCLU changes. Three land-cover (forest, montane savanna and water bodies) and three land-use types (pasturelands, mining and urban areas) were mapped. The overall accuracies and kappa values of the classification were higher than 0.91 for each of the classified images. Throughout the change detection period, ~47% (19,320 km2) of the forest was preserved mainly within protected areas, while almost 42% (17,398 km2) of the area was converted from forests to pasturelands. An intrinsic connection between the increase in mining activity and the expansion of urban areas also exists. The direct impacts of mining activities were more significant throughout the montane savanna areas. We concluded that the GEOBIA approach adopted in this study combines the advantages of quality human interpretation and the capacities of quantitative computing.

Details

Title
A GEOBIA Approach for Multitemporal Land-Cover and Land-Use Change Analysis in a Tropical Watershed in the Southeastern Amazon
Author
Souza-Filho, Pedro Walfir M; Nascimento, Wilson R; Santos, Diogo C; Weber, Eliseu J; Silva, Renato O; Siqueira, José O
Publication year
2018
Publication date
Nov 2018
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2303892152
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.