Full Text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hyperspectral images (HSIs) data that is typically presented in 3-D format offers an opportunity for 3-D networks to extract spectral and spatial features simultaneously. In this paper, we propose a novel end-to-end 3-D dense convolutional network with spectral-wise attention mechanism (MSDN-SA) for HSI classification. The proposed MSDN-SA exploits 3-D dilated convolutions to simultaneously capture the spectral and spatial features at different scales, and densely connects all 3-D feature maps with each other. In addition, a spectral-wise attention mechanism is introduced to enhance the distinguishability of spectral features, which improves the classification performance of the trained models. Experimental results on three HSI datasets demonstrate that our MSDN-SA achieves competitive performance for HSI classification.

Details

Title
Hyperspectral Images Classification Based on Dense Convolutional Networks with Spectral-Wise Attention Mechanism
Author
Fang, Bei; Li, Ying; Zhang, Haokui; Jonathan Cheung-Wai Chan
Publication year
2019
Publication date
Feb 2019
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2303955005
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.