Full text

Turn on search term navigation

© 2019 Shaikh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To enrich any model and its dynamics introduction of delay is useful, that models a precise description of real-life phenomena. Differential equations in which current time derivatives count on the solution and its derivatives at a prior time are known as delay differential equations (DDEs). In this study, we are introducing new techniques for finding the numerical solution of fractional delay differential equations (FDDEs) based on the application of neural minimization (NM) by utilizing Chebyshev simulated annealing neural network (ChSANN) and Legendre simulated annealing neural network (LSANN). The main purpose of using Chebyshev and Legendre polynomials, along with simulated annealing (SA), is to reduce mean square error (MSE) that leads to more accurate numerical approximations. This study provides the application of ChSANN and LSANN for solving DDEs and FDDEs. Proposed schemes can be effortlessly executed by using Mathematica or MATLAB software to get explicit solutions. Computational outcomes are depicted, for various numerical experiments, numerically and graphically with error analysis to demonstrate the accuracy and efficiency of the methods.

Details

Title
Neural minimization methods (NMM) for solving variable order fractional delay differential equations (FDDEs) with simulated annealing (SA)
Author
Shaikh, Amber; Jamal, M Asif; Hanif, Fozia; Sadiq Ali Khan, M; Inayatullah, Syed
First page
e0223476
Section
Research Article
Publication year
2019
Publication date
Oct 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2303979802
Copyright
© 2019 Shaikh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.