Full text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Salt marsh vegetation density varies considerably on short spatial scales, complicating attempts to evaluate plant characteristics using airborne remote sensing approaches. In this study, we used a mast-mounted hyperspectral imaging system to obtain cm-scale imagery of a salt marsh chronosequence on Hog Island, VA, where the morphology and biomass of the dominant plant species, Spartina alterniflora, varies widely. The high-resolution hyperspectral imagery allowed the detailed delineation of variations in above-ground biomass, which we retrieved from the imagery using the PROSAIL radiative transfer model. The retrieved biomass estimates correlated well with contemporaneously collected in situ biomass ground truth data ( R2=0.73 R2=0.73 ). In this study, we also rescaled our hyperspectral imagery and retrieved PROSAIL salt marsh biomass to determine the applicability of the method across spatial scales. Histograms of retrieved biomass changed considerably in characteristic marsh regions as the spatial scale of the imagery was progressively degraded. This rescaling revealed a loss of spatial detail and a shift in the mean retrieved biomass. This shift is indicative of the loss of accuracy that may occur when scaling up through a simple averaging approach that does not account for the detail found in the landscape at the natural scale of variation of the salt marsh system. This illustrated the importance of developing methodologies to appropriately scale results from very fine scale resolution up to the more coarse-scale resolutions commonly obtained in airborne and satellite remote sensing.

Details

Title
Retrieval of Salt Marsh Above-Ground Biomass from High-Spatial Resolution Hyperspectral Imagery Using PROSAIL
Author
Eon, Rehman S; Goldsmith, Sarah; Bachmann, Charles M; Tyler, Anna Christina; Lapszynski, Christopher S; Badura, Gregory P; Osgood, David T; Ryan, Brett
Publication year
2019
Publication date
Jan 2019
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2304043448
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.