Full Text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Shoreline mapping using satellite remote sensing images has the advantages of large-scale surveys and high efficiency. However, low spatial resolution, various geometric morphologies and complex offshore environments prevent accurate positioning of the shoreline. This article proposes a semi-global subpixel shoreline localization method that considers utilizing morphological control points to divide the initial artificial shoreline into segments of relatively simple morphology and analyzing the local intensity homogeneity to calculate the intensity integral error. Combined with the segmentation-merge-fitting method, the algorithm determines the subpixel location accurately. In experiments, we select five artificial shorelines with various geometric morphologies from Landsat 8 Operational Land Imager (OLI) data. The five subpixel artificial shoreline RMSE results lie in the range of 3.02 m to 4.77 m, with line matching results varying from 2.51 m to 3.72 m. Thus, it can be concluded that the proposed subpixel localization algorithm is effective and applicable to artificial shoreline in various geometric morphologies and is robust to complex offshore environments, to some extent.

Details

Title
Automatic Semi-Global Artificial Shoreline Subpixel Localization Algorithm for Landsat Imagery
Author
Song, Yan; Liu, Fan; Feng, Ling; Yue, Linwei
Publication year
2019
Publication date
Jan 2019
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2304049550
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.