It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Elucidating the genetic basis of metabolic resistance to insecticides in malaria vectors is crucial to prolonging the effectiveness of insecticide-based control tools including long lasting insecticidal nets (LLINs). Here, we show that cis-regulatory variants of the cytochrome P450 gene, CYP6P9b, are associated with pyrethroid resistance in the African malaria vector Anopheles funestus. A DNA-based assay is designed to track this resistance that occurs near fixation in southern Africa but not in West/Central Africa. Applying this assay we demonstrate, using semi-field experimental huts, that CYP6P9b-mediated resistance associates with reduced effectiveness of LLINs. Furthermore, we establish that CYP6P9b combines with another P450, CYP6P9a, to additively exacerbate the reduced efficacy of insecticide-treated nets. Double homozygote resistant mosquitoes (RR/RR) significantly survive exposure to insecticide-treated nets and successfully blood feed more than other genotypes. This study provides tools to track and assess the impact of multi-gene driven metabolic resistance to pyrethroids, helping improve resistance management.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK; Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon; Department of Biochemistry and Molecular Biology, Faculty of Science University of Buea, Buea, Cameroon
2 Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK; Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
3 Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
4 Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
5 Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK; School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK