It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A neutrino mass model is suggested within an \[SU(4)\otimes U(1)\]-electroweak theory. The smallness of neutrino masses can be guaranteed by a seesaw mechanism realized through Yukawa couplings to a scalar SU(4)-decuplet. In this scheme the light active neutrinos are accompanied by heavy neutrinos, which may have masses at different scales, including those within eV–MeV scales investigated quite intensively in both particle physics and astrophysics/cosmology. The flavour neutrinos are superpositions of light neutrinos and a small fraction of heavy neutrinos with the mixing to be determined by the model’s parameters (Yukawa coupling coefficients or symmetry breaking scales). The distribution shape of the Yukawa couplings can be visualized via a model-independent distribution of the neutrino mass matrix elements derived by using the current experimental data. The absolute values of these Yukawa couplings are able to be determined if the symmetry breaking scales are known, and vice versa. With reference to several current and near future experiments, detectable bounds of these heavy neutrinos at different mass scales are discussed and estimated.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institute of Research and Development, Duy Tan University, Danang, Vietnam
2 International Centre for Physics and Center for Theoretical Physics at Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam; Institute for Interdisciplinary Research in Science and Education, ICISE, Quy Nhon, Vietnam
3 International Centre for Physics and Center for Theoretical Physics at Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam