Abstract

Inulin-rich foods exert a prebiotic effect, as this polysaccharide is able to enhance beneficial colon microbiota populations, giving rise to the in situ production of short-chain fatty acids (SCFAs) such as propionic and butyric acids. These SCFAs are potent preventive agents against colorectal cancer due to their histone deacetylases inhibitory properties, which induce apoptosis in tumor colonocytes. As colorectal cancer is the fourth most common neoplasia in Europe with 28.2 new cases per 100,000 inhabitants, a cost-effective preventive strategy has been tested in this work by redesigning common porcine meat products (chorizo sausages and cooked ham) consumed by a substantial proportion of the population towards potential colorectal cancer preventive functional foods. In order to test the preventive effect of these inulin-rich meat products against colorectal cancer, an animal model (Rattus norvegicus F344) was used, involving two doses of azoxymethane (10 mg/kg) and two treatments with dextran sodium sulfate (DSS) during a 20-week assay period. Control feed, control sausages, functional sausages (15.7% inulin), control cooked ham and functional cooked ham (10% inulin) were used to feed the corresponding animal cohorts. Then, the animals were sacrificed and their digestive tract tissues were analyzed. The results showed a statistically significant 49% reduction in the number of colon polyps in the functional meat products cohorts with respect to the control meat products animals, as well as an increase in the cecum weight (an indicator of a diet rich in prebiotic fiber), a 51.8% increase in colon propionate production, a 39.1% increase in colon butyrate concentrations, and a reduction in the number of hyperplastic Peyer’s patches. Metagenomics studies also demonstrated colon microbiota differences, revealing a significant increase in Bacteroidetes populations in the functional meat products (mainly due to an increase in Bacteroidaceae and Prevotellaceae families, which include prominent propionate producers), together with a reduction in Firmicutes (especially due to lower Lachnospiraceae populations). However, functional meat products showed a remarkable increase in the anti-inflammatory and fiber-fermentative Blautia genus, which belongs to this Lachnospiraceae family. The functional meat products cohorts also presented a reduction in important pro-inflammatory bacterial populations, such as those of the genus Desulfovibrio and Bilophila. These results were corroborated in a genetic animal model of CRC (F344/NSlc-Apc1588/kyo) that produced similar results. Therefore, processed meat products can be redesigned towards functional prebiotic foods of interest as a cost-effective dietary strategy for preventing colorectal cancer in human populations.

Details

Title
Traditional Processed Meat Products Re-designed Towards Inulin-rich Functional Foods Reduce Polyps in Two Colorectal Cancer Animal Models
Author
Fernández, Javier 1 ; Ledesma, Estefanía 2 ; Monte, Joaquín 2 ; Millán, Enric 3 ; Costa, Pedro 3 ; Vanessa García de la Fuente 4 ; Fernández García, María Teresa 4 ; Martínez-Camblor, Pablo 5 ; Villar, Claudio J 1 ; Lombó, Felipe 1   VIAFID ORCID Logo 

 Research Unit “Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC”, Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo. Avda. Julián Clavería, 7, Oviedo, Spain; IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain; ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain 
 El Hórreo Healthy Foods SL. Polígono de Granda 17, Siero, Spain 
 COSFER SA, C/Isaac Peral 2, Can Castells, Canovelles, Barcelona, Spain 
 Molecular Histopathology Unit in Animal Models for Cancer, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain 
 Geisel School of Medicine at Dartmouth, Dartmouth College, Hannover, New Hampshire, USA 
Pages
1-17
Publication year
2019
Publication date
Oct 2019
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2305788749
Copyright
© 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.