Full Text

Turn on search term navigation

© 2019 Parrell et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We present a new computational model of speech motor control: the Feedback-Aware Control of Tasks in Speech or FACTS model. FACTS employs a hierarchical state feedback control architecture to control simulated vocal tract and produce intelligible speech. The model includes higher-level control of speech tasks and lower-level control of speech articulators. The task controller is modeled as a dynamical system governing the creation of desired constrictions in the vocal tract, after Task Dynamics. Both the task and articulatory controllers rely on an internal estimate of the current state of the vocal tract to generate motor commands. This estimate is derived, based on efference copy of applied controls, from a forward model that predicts both the next vocal tract state as well as expected auditory and somatosensory feedback. A comparison between predicted feedback and actual feedback is then used to update the internal state prediction. FACTS is able to qualitatively replicate many characteristics of the human speech system: the model is robust to noise in both the sensory and motor pathways, is relatively unaffected by a loss of auditory feedback but is more significantly impacted by the loss of somatosensory feedback, and responds appropriately to externally-imposed alterations of auditory and somatosensory feedback. The model also replicates previously hypothesized trade-offs between reliance on auditory and somatosensory feedback and shows for the first time how this relationship may be mediated by acuity in each sensory domain. These results have important implications for our understanding of the speech motor control system in humans.

Details

Title
The FACTS model of speech motor control: Fusing state estimation and task-based control
Author
Parrell, Benjamin; Ramanarayanan, Vikram; Nagarajan, Srikantan; Houde, John
First page
e1007321
Section
Research Article
Publication year
2019
Publication date
Sep 2019
Publisher
Public Library of Science
ISSN
1553734X
e-ISSN
15537358
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2306307247
Copyright
© 2019 Parrell et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.