Full Text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In geoscientific studies, conventional bilinear interpolation has been widely used for remapping between logically rectangular grids on the surface of a sphere. Recently, various spherical grid systems including geodesic grids have been suggested to tackle the singularity problem caused by the traditional latitude–longitude grid. We suggest an alternative to pre-existing bilinear interpolation methods for remapping between any spherical grids, even for randomly distributed points on a sphere. This method supports any geometrical configuration of four source points neighboring a target point for interpolation, and provides remapping accuracy equivalent to the conventional bilinear method. In addition, for efficient search of neighboring source points, we use the linked-cell mapping method with a cubed-sphere as a reference frame. As a result, the computational cost is proportional to NlogN instead ofN2(N being the number of grid points), even for the remapping of randomly distributed points on a sphere.

Details

Title
An Alternative Bilinear Interpolation Method Between Spherical Grids
Author
Kim, Ki-Hwan; Shim, Pyoung-Seop; Shin, Seoleun
Publication year
2019
Publication date
Mar 2019
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2306563762
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.