It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Forest inventory provides comprehensive information about the geometric and biometric state of forests as well as vegetated areas. In this study, a point-based 3D method is presented for tree detection as well as measuring of structural properties of forests such as the tree height, tree position and canopy area using high resolution point cloud which is provided by an Unmanned Aerial Vehicle (UAV)-based LiDAR sensor. The proposed method is based on the density of point cloud and 2D and 3D distance measurements. It includes three main steps as pre-processing, tree detection, and extraction of tree structural attributes. After generating a canopy height model, an image is created based on the density of point cloud. Next, points are classified based on 2D and 3D distance measurements, sequentially, from the highest to the lowest. According to the results, the rate of tree detection is about 95% and the main structural parameters of a tree such as the position, height, area and length of the canopy are estimated with the accuracy of 1.97 m, 0.36 m, 12.78 m2 and 0.79 m, respectively.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Iran