It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The estimation of biomass has been highly regarded for assessing carbon sources. In this paper, ALOS PALSAR, Sentinel-1, Sentinel-2 and ground data are used for estimating of above ground biomass (AGB) with SVM-genetic model Moreover Landsat satellite data was used to estimate land use change detection. The wide range of vegetation, textural and principal component analysis (PCA) indices (using optical images) and backscatter, decomposition and textural features (from radar images) are derived together with in situ collected AGB data into model to predict AGB. The results indicated that the coefficient of determination (R2) for ALOS PALSAR, Sentinel-1, Sentinel-2 were 0.51, 0.50 and 0.60 respectively. The best accuracy for combining all data was 0.83. Afterwards, the carbon stock map was calculated. Landsat series data were acquired to document the spatiotemporal dynamics of green spaces in the study area. By using a supervised classification algorithm, multi-temporal land use/cover data were extracted from a set of satellite images and the carbon stock time series simulated by using carbon stock maps and green space (urban forest) maps.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Surveying and Geospatial Engineering, University of Tehran, Tehran, Iran
2 Faculty of Natural Resources, University of Tehran, Karaj, Iran Iran