It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Lidar is an advanced atmospheric and meteorological monitoring instrument. The atmospheric aerosol physical parameters can be acquired through inversion of lidar signals. However, traditional methods of solving lidar equations require many assumptions and cannot get accurate analytical solutions. In order to solve this problem, a method of inverting lidar equation using artificial neural network is proposed. This method is based on BP (Back Propagation) artificial neural network, the weights and thresholds of BP artificial neural network is optimized by Genetic Algorithm. The lidar equation inversion prediction model is established. The actual lidar detection signals are inversed using this method, and the results are compared with the traditional method. The result shows that the extinction coefficient and backscattering coefficient inverted by the GA-based BP neural network model are accurate than that inverted by traditional method, the relative error is below 4%. This method can solve the problem of complicated calculation process, as while as providing a new method for the inversion of lidar equations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Computer Science and Engineering, North MinZu University, Yinchuan, 750021, China
2 School of Electrical and Information Engineering, North MinZu University, Yinchuan, 750021, China