Full text

Turn on search term navigation

© 2019 Tanveer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Tuned liquid column ball damper (TLCBD) is a passive control device used for controlling the building vibrations induced from wind or earthquakes. TLCBD is a modified form of conventional tuned liquid column damper (TLCD). This paper studies the effect of TLCBD on the four-storey steel frame structure. The performance of the TLCBD is also compared with conventional TLCD. The analytical model of both TLCD and TLCBD is presented here. The effectiveness of these analytical models is examined experimentally by series of shaking table tests under different excitation levels including harmonic loadings and seismic excitations. In TLCBD, the vibration is reduced significantly as compared to TLCD by using steel ball as a moving orifice. The difference in diameter of steel ball and tube, containing the liquid column, acts as an orifice which moves with the movement of the ball. This moving orifice phenomenon enhanced the vibration reduction effect by resisting the water motion in the TLCBD. Root mean square (RMS) and peak values of acceleration were calculated for each loading and each storey of uncontrolled and controlled structures. Comparison of the time histories of controlled and uncontrolled structures for different loadings is also reported. Results indicate that the TLCBD is more effective in the earthquake scenarios as compared to the harmonic excitations. The TLCBD controls the vibration of the primary structure significantly in vibration reduction.

Details

Title
Application of tuned liquid column ball damper (TLCBD) for improved vibration control performance of multi-storey structure
Author
Muhammad Tanveer; Usman, Muhammad; Khan, Imdad Ullah; Ahmad, Shakil; Hanif, Asad; Syed Hassan Farooq
First page
e0224436
Section
Research Article
Publication year
2019
Publication date
Oct 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2308692745
Copyright
© 2019 Tanveer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.