It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) dark matter search experiment aims for the detection of dark matter particles via elastic scattering off nuclei in \[\mathrm {CaWO_4}\] crystals. To understand the CRESST electromagnetic background due to the bulk contamination in the employed materials, a model based on Monte Carlo simulations was developed using the Geant4 simulation toolkit. The results of the simulation are applied to the TUM40 detector module of CRESST-II phase 2. We are able to explain up to \[(68 \pm 16)\,\mathrm {\%}\] of the electromagnetic background in the energy range between 1 and \[40\,\mathrm {keV}\].
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Max-Planck-Institut für Physik, Munich, Germany
2 Max-Planck-Institut für Physik, Munich, Germany; Departamento de Fisica, Universidade de Coimbra, Coimbra, Portugal
3 Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
4 INFN, Laboratori Nazionali del Gran Sasso, Assergi, Italy
5 INFN, Laboratori Nazionali del Gran Sasso, Assergi, Italy; GSSI-Gran Sasso Science Institute, L’Aquila, Italy
6 Physik-Department and Excellence Cluster Universe, Technische Universität München, Garching, Germany; Walther-Meißner-Institut für Tieftemperaturforschung, Garching, Germany
7 Physik-Department and Excellence Cluster Universe, Technische Universität München, Garching, Germany
8 Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, Wien, Austria
9 Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, Wien, Austria; Atominstitut, Technische Universität Wien, Wien, Austria
10 Eberhard-Karls-Universität Tübingen, Tübingen, Germany
11 Department of Physics, University of Oxford, Oxford, UK
12 INFN, Laboratori Nazionali del Gran Sasso, Assergi, Italy; Dipartimento di Ingegneria Civile e Meccanica, Universitá degli Studi di Cassino e del Lazio Meridionale, Cassino, Italy
13 Physik-Department and Excellence Cluster Universe, Technische Universität München, Garching, Germany; GSSI-Gran Sasso Science Institute, L’Aquila, Italy
14 Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, Wien, Austria; Atominstitut, Technische Universität Wien, Wien, Austria; School of Mathematical and Physical Sciences, University of Sussex, Brighton, UK
15 INFN, Laboratori Nazionali del Gran Sasso, Assergi, Italy; GSSI-Gran Sasso Science Institute, L’Aquila, Italy; Department of Physics, Chalmers University of Technology, Göteborg, Sweden