This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
As a global epidemic disease, obesity has become one of the greatest public health concerns of the 21st century [1]. In 2014, the World Health Organization estimated that more than 1.9 billion adults are overweight and over 600 million are obese [2]. Obesity strongly increases the risk factors for nonalcoholic fatty liver disease, type 2 diabetes, cardiovascular disease, and cancer [3]. All of these diseases not only severely influence the quality of life but also shorten the lifespan of human [4, 5]. However, most of the commercially available drugs show only marginal effects. The rebound after drug withdrawal and side effects of these drugs are considered the major problems. To overcome some of these limitations, we utilized safe functional foods and dietary regulation for obesity treatment.
Since ancient times, peanuts are popular in China as a longevity nut. Peanut skin is used to treat hemophilia, primary and secondary thrombocytopenic purpura, and hepatic hemorrhage in traditional Chinese medical science. Peanut is rich in phenols and other potentially health-promoting compounds. And phenolic compounds are largely found in peanut skin extract [6]. Phenolic compounds are effective on various diseases, such as diabetes, obesity, cancer, cardiovascular disease, and inflammation [7–11]. Recently, we found that a mixture of PSE and fish oil could improve the memory and learning ability of normal mice [12]. In addition, the novel antiobesity effect of PSE is consistently observed [13–15]. High-fat diet- (HFD-) induced obese mice were used to investigate the antiobesity effects and mechanism of action of PSE under pathological condition.
Adipose tissue is an endocrine organ that produces several adipokines, such as leptin and adiponectin, which are involved in the regulation of energy metabolism, insulin sensitivity, appetite, inflammation, atherosclerosis, and cell proliferation [15, 16]. Leptin is a product of the obese gene, which is mainly produced by adipose tissue and at low levels by the stomach, skeletal muscle, and placenta [17]. Leptin regulates food intake and energy expenditure by targeting the leptin receptor in the arcuate nucleus of the hypothalamus [18]. Leptin inhibits NPY and agouti-related peptide (AgRP), which are orexigenic and increase food intake, and stimulates proopiomelanocortin, which activates anorexigenic factors, such as α-melanocyte-stimulating hormone, inhibiting food intake [19–21]. Adiponectin is a protein hormone with 244 amino acids derived from adipose tissue [22]. Adiponectin mainly targets adiponectin receptors (AdipoR1 and AdipoR2) to regulate energy metabolism and exert functions, such as antiatherogenic, anti-inflammatory, antidiabetic, and cardioprotective effect [23–25]. Increased leptin gene expression in adipocytes and increased plasma leptin have been reported in obese individuals [26, 27]. The gene expression of adiponectin and plasma adiponectin in obese patients, pigs, and rodents are also significantly reduced [28, 29]. Therefore, we examined the antiobesity effects of PSE on obese and normal mice and focused on adiponectin and leptin signaling pathways to analyze the mechanism of action. We reported that the adiponectin and leptin signaling pathways were involved in the antiobesity effect of PSE in obese mice.
2. Materials and Methods
2.1. Preparation of Peanut Skin Extract and Animal Experimental Design
The dried peanut skin (Anjie, Fuzhou, Zhejiang, China) was extracted with a mixture of ethanol and water at ratio of 40 : 60 for three times. The extracts were collected and adsorbed with HP-20 resin. After washing with water, the HP-20 resin was eluted with ethanol solution. The eluents are collected, combined, concentrated, and dried to prepare the PSE. Milli Q water was used as vehicle in this study. The ICR mice at the age of five weeks (
In this experiment, six-week male mice were divided into five groups and each group contained ten animals. The normal control group received vehicle (water) and ND. The HFD control group acquired the vehicle and HFD freely. Three HFD plus PSE groups admitted PSE at 4, 80, and 160 mg/kg body weight per day and HFD freely. The experimental period was for 6 weeks, and the body weight, food intake, and water consumption were recorded every week during this period. At the end of the experiment, blood was collected from the orbit of the mice using the capillary tube. The mice were killed, and the heart, liver, pancreas, spleen, kidney, white adipose tissue, and brain of the mice were weighed and obtained as samples. The organs were stored at -30°C for further analysis. This experiment was repeated three times.
2.2. Preparation and Purification of pTarget/ADN, pTarget/LPN, and pTarget vectors
Plasmid DNA-encoding mouse adiponectin (ADN) or leptin (LPN) was constructed, and the preparation and purification of pTarget/ADN, pTarget/LPN, and pTarget vectors were done as described in a previous study [26]. The detailed method was shown in the supporting information.
2.3. Overexpression of Adiponectin and Leptin Gene in the Livers of Obese Mice In Vivo
Fifty of the male ICR mice at six weeks old were randomly divided into five groups. The normal control group was fed with a ND, and other groups were given a HFD for one month. The gene transfer of leptin and adiponectin was done as described in a previous study [26]. The detailed method was displayed in the supporting information.
2.4. Knockdown of Leptin Receptor in Mice In Vivo
The synthetic siRNA and annealed duplex of 23-nucleotide RNA targeted to a leptin receptor (site 5 or site 6) were purchased from the company Sangon Biotech, Shanghai, China. The siRNA injection was performed with hydrodynamic based gene delivery consistent with other reports [30]. The detailed method was displayed in the supporting information.
2.5. Measurement of Fasting Glucose and Biochemical Indexes of Blood
At the end of the experiment, mice were fasted overnight, and the fasting glucose was measured using a glucometer (Andon Health, Tianjin, China)as our previous study [31]. Blood was collected from the mouse orbit using a capillary tube and centrifuged, and the supernatant was obtained. Leptin and adiponectin were measured using mouse leptin and adiponectin ELISA kits (Westang Bio-Tech, Shanghai, China; Cusabio, Wuhan, China) in accordance with the instructions of the manufacturer. The plasma samples (ALT, AST, TG, TC, HDL, and LDL) were measured using assay kits (Roche, Basel, Switzerland).
2.6. RT-PCR Analysis
Approximately 100 mg of epididymal fat, liver, and one hypothalamus samples was used to extract RNA. RNA extraction and cDNA synthesis of the white adipose tissue, liver, and hypothalamus were done as described in our previous studies [26]. The detailed method was shown in the supporting information.
2.7. Western Blot Analysis
The 200 mg protein sample of each liver, fat tissue, and hippocampus was prepared, and protein concentration was measured as described in a previous study [26]. The detailed method was given in the supporting information.
2.8. Assessment of Histological Sections
The samples of the fat tissue and livers were preserved in 10% formalin solution followed by tissue dehydration with alcohol and xylene as our paper [31]. Each sample was then embedded in paraffin wax, sectioned at 5 μm, and mounted on slides prior to staining. Hematoxylin and eosin stains and oil red staining were used. The slides were observed under the light microscope, and the observations were recorded using 20x lenses. The size of fat cells was calculated using Image-Pro plus 6 software (Media Cybernetics, Maryland, USA).
2.9. Analysis of Nonoligosaccharide of PSE
The nonoligosaccharide of PSE was directly analyzed by Agilent technologies 6224A accurate mass LC-TOF-MS under the following conditions: Agilent Extend C18 column (3.5 μm,
2.10. Preparation of Oligosaccharide and Nonoligosaccharide
PSE (1.2 g) was purified by HPLC [Develosil ODS-UG-5 (
2.11. Monosaccharide Composition Analysis of Oligosaccharide Fraction
Approximately 2 mg oligosaccharide fraction was hydrolyzed using 4 ml of 2 M trifluoroacetic acid at 110°C for 2 h. The hydrolysate sample was dried, dissolved in water, and then reduced with NaBH4. The samples were acetylated with 0.5 ml pyridine-acetic anhydride at a ratio of 1 : 1
2.12. Molecular Weight (Mw) Determination of Oligosaccharide Fraction of PSE
The average Mw of the oligosaccharide fraction of PSE was determined by high-performance gel permeation chromatography (HPGPC) with equipment of Waters 515 chromatography, TOSOH BIOSEP G4000SWXL column (
2.13. Statistical Analysis
Animal experiments were repeated twice or thrice. The experimental data was presented as the mean
3. Results
3.1. PSE Prevents HFD-Induced Obesity in Mice
The changes of body weight, food intake, and water consumption of HFD-induced obese mice are given in Figure 1. The body weight gain and food intake of obese mice are significantly higher than those of normal mice (
[figures omitted; refer to PDF]
3.2. PSE Reduces Fat Tissue and Regulates Gene Expression and Secretion of Adipocytokine in Obese Mice
The changes of epididymal adipose tissue weight; fat cell size; gene expressions of leptin, adiponectin, UCP1, UCP2, and LPL; leptin and adiponectin protein levels in adipose tissue; and plasma leptin and adiponectin of obese mice are displayed in Figure 2 and Table 1. The epididymal adipose tissue in the HFD group is significantly increased compared with that in the normal control group (Figure 2(a),
[figures omitted; refer to PDF]
Table 1
Effects of PSE on blood biochemical parameters of obese mice.
Groups | ALT (U/l) | AST (U/l) | TG (mmol/l) | TC (mmol/l) | HDL (mmol/l) | LDL (mmol/l) | GLU (mmol/l) | LEP (pg/ml) | ADP (μg/ml) |
---|---|---|---|---|---|---|---|---|---|
ND | |||||||||
HFD | 2.05± 0.12# | 4.85±0.27### | 4.51±0.23### | 0.90±0.07### | 8.15±0.30### | 1526.54±6.88### | 10.67±0.37### | ||
HFD+4 mg/kg PSE | — | — | |||||||
HFD+80 mg/kg PSE | |||||||||
HFD+160 mg/kg PSE | — | — |
ND: normal dietary; HFD: high-fat diet; ALT: alanine aminotransferase; AST: aspartate aminotransferase; TG: triglyceride; TC: total cholesterol; HDL: high-density lipoprotein; LDL: low-density lipoprotein; GLU: glucose; LEP: leptin; ADP: adiponectin. The sample number is 7. # and ### represent the difference between the ND group and HFD group.
3.3. PSE Eliminates Fatty Liver and Regulates Gene Expressions in the Liver of Obese Mice
The changes of liver weight, morphological changes of liver cells, and gene expression-related adipogenesis in the liver of obese mice are shown in Figure 3. The significant increase of liver weight in the HFD control group is observed (Figure 3(a),
[figures omitted; refer to PDF]
3.4. PSE Regulates the Gene Expressions in the Hypothalamus of Obese Mice
The changes of gene expression-related food intake and energy metabolism in the hypothalamus of obese mice are described in Figure 4. The increase of AgRP and NPY and reduction of leptin and ADR1 gene expressions are observed in the HFD control group (Figure 4(a);
[figures omitted; refer to PDF]
3.5. PSE Changes Blood Biochemical Parameters of Obese Mice
The changes in blood biochemical parameters of obese mice after administrating PSE are revealed in Table 1. The plasma TG, TC, HDL, LDL, and GLU in the HFD group were significantly increased compared with those in the ND group (
3.6. Leptin and Adiponectin Gene Transfers Reverse HFD-Induced Obesity in Mice
To indicate whether the leptin and adiponectin signaling pathways influence the antiobesity effects of PSE, we used HFD to induce obesity in obese mice for one month and transferred leptin, adiponectin, and leptin plus adiponectin gene in obese mice in vivo. The changes in body weight gain, blood glucose, fat tissue and liver weights, the liver changes, food intake, water consumption, and adiponectin and leptin gene expression in the liver of obese mice after gene transfer are given in Figures 5(a)–5(d) and Supplementary Figure 1a–d. The body weight gains of obese mice after leptin, adiponectin, and leptin plus adiponectin gene transfer for six days are reduced by 232.5%, 268.75%, and 362.1% compared with the pTarget vector-treated group (Figure 5(a),
[figures omitted; refer to PDF]
3.7. Leptin Receptor siRNA Diminishes the Antiobesity Effects of PSE in Mice In Vivo
To indicate whether the leptin receptor siRNA can knock down leptin receptor gene expression in the liver and hypothalamus, we injected siRNA of leptin receptor with hydrodynamics-based gene delivery in the liver and hypothalamus. The gene expression of leptin receptor in the liver and hypothalamus after injection of leptin receptor siRNA is given in Figure 6(a) and Supplementary Figure 2. The gene expression is significantly decreased compared with the control group (
[figures omitted; refer to PDF]
3.8. The Components of PSE and Antiobesity Effects of Oligosaccharide and Nonoligosaccharide Fractions of PSE for Obese Mice
To clarify the chemical components of PSE, we used HPLC to divide PSE into oligosaccharide and nonoligosaccharide fractions. These fractions’ 1H-NMR and 13C-NMR spectra were analyzed. By comparing with the typical peaks of 13C-NMR of oligosaccharide and nonoligosaccharide fractions, we found that the peaks in oligosaccharide (
[figures omitted; refer to PDF]
4. Discussion
To get the optimum dose relationship of PSE, we used normal and obese mice to examine several doses of PSE such as 4, 20, 40, 80, and 160 mg/kg. The results in Figure 1, Supplementary Figure 12, and Supplementary Figure 13 indicated that PSE displayed better dose-dependent manner at 4, 80, and 160 mg/kg. Furthermore, we used these doses to test the antiobesity effects of PSE with obese mice. The significant reductions in body weight and adipose tissue weight after administrating PSE, as shown in Figures 1(a)–2(a), are consistent with other reports [14–16]. We found the significant decrease of food intake and water consumption in the PSE-treated groups, as shown in Figures 1(b) and 1(c). These results suggest that PSE can restrain the increase in the body weight of obese mice induced by HFD not only by decreasing fat deposition but also by lowering appetite and water intake. PSE is different from peanut sprout extract and resveratrol, which did not affect food intake [13, 14]. PSE possesses other bioactive compounds that can lower the appetite of mice that must be indicated in the future.
The main features of obesity are increasing in fat cell numbers and size. Obesity has been prevented by reducing the differentiation of fibroblastic preadipocytes to mature adipocytes and inhibiting lipogenesis [32]. In the present study, HFD significantly increases the weight and size of fat cells of adipose tissue, whereas both of them are significantly decreased after administrating PSE (Figures 2(a) and 2(b)). These results suggest that PSE essentially prevents fat synthesis and accelerates the breakdown of fat to produce antiobesity effects.
The liver is another important organ that prevents obesity. Obesity is often accompanied by hepatic lipid accumulation and development of a fatty liver [33]. The reduction of liver weight and removal of the fat in liver cells after the administration of PSE (Figures 3(a) and 3(c)) indicate that PSE may prevent hepatic lipid accumulation. SREBP-1c is a transcription factor that regulates the expression of downstream target genes, such as FAS and SCD-1, which are involved in glucose utilization and fatty acid synthesis [33]. FAS and SCD-1 are the central lipogenic proteins, along with CD36, are integral membrane protein importing fatty acids inside the cells, and contribute to energy storage by increasing fatty acid uptake in the liver. The significant increase and reduction of these gene expressions of the liver and morphological changes of the liver cells in the HFD group and HFD plus PSE-treated group (Figure 3) indicate that the lipogenesis-inhibiting effects of PSE may be mediated by repressing fatty acid uptake via inhibition of SREBP-1c, FAS, SCD-1, and CD36, and PSE significantly affects nonalcoholic fatty liver disease.
We found that the plasma leptin in obese mice is very high (Table 1), but the leptin that entered into the hypothalamus is lower (Figure 4(c)). The plasma leptin concentration is lowered after the reduction of body weight, and the leptin in the hypothalamus is elevated (Table 1 and Figure 4(c)). This phenomenon has demonstrated that the permeability of the blood brain barrier (BBB) plays an important role in the entry of leptin into the hypothalamus and control of appetite. The increase of BBB permeability and specific transport of leptin may improve the antiobesity efficiency of leptin under the obese condition. The chylous blood of obese mice is observed after feeding HFD to mice for a long time; this symptom of the obese mice is eliminated after administrating PSE (data not shown). High blood lipids may reduce BBB permeability and prevent plasma leptin from entering the hypothalamus. PSE can clear blood fat to improve the permeability of BBB and increase the leptin signal transduction in the hypothalamus. We needed to indicate this feature in the future study.
During the analysis of the action mechanism, the reduction of adiponectin gene expression, adiponectin protein level in the adipose tissue and hypothalamus, and plasma adiponectin in HFD group, as well as the increase of these factors in the HFD plus PSE group (Figures 2(b) and 2(c) and Table 1), demonstrate that PSE is similar to resveratrol and peanut sprout extract in producing antiobesity effects via regulation of adiponectin signaling pathways. In addition, the leptin signaling pathways of mice in the HFD and HFD plus PSE groups are also evidently changed. The significant increase of leptin gene expression, leptin protein level in adipose tissue and plasma leptin, and reduction of leptin in the hypothalamus of mice in the HFD group (Figures 2(b) and 4(c)) are consistent with other reports [26, 27]. The results displayed in Figures 2(c), 2(e), Table 1 and Figure 4(c) suggest that PSE can improve the leptin resistance of obese mice induced by HFD and leptin/leptin receptor/AgRP/NPY and adiponectin/ADR signaling pathways involved in the antiobesity effects of PSE for obese mice. We used the overexpression of leptin and adiponectin and knockdown of leptin receptors to confirm the important role of leptin and adiponectin signaling pathways (Figures 5 and 6, Supplementary Figure 1 and Figure 2). We found that adiponectin gene transfer in mice in vivo under normal and pathological conditions can produce opposite function. The food intake and body weight gain of normal mice are significantly increased after adiponectin gene transfer [34]. These factors evidently decrease in obese mice after adiponectin gene transfer as shown in Figure 5.
We also investigated the safety, as well as hypolipidemic and hypoglycemic, effects of PSE, in obese mice. The changes of ALT, AST, TG, TC, and GLU shown in Table 1 confirm that PSE is a highly safe bioactive fraction and exhibits novel hypolipidemic and hypoglycemic effects for obese mice.
PSE mainly contains the dimer, trimer, and tetramer of A- and B-type procyanidin and high content of oligosaccharide (Supplementary Table 2 and Supplementary Figure 8 and Figure 9). Given that our sample was treated by a specific column, no resveratrol is observed, unlike the reported peanut skin extracts, which contain high resveratrol [35]. Furthermore, we subdivided PSE components into oligosaccharide and nonoligosaccharide. We measured the antiobesity effects of these fractions with HFD-induced obese mice in vivo. The results in Figure 7 and Supplementary Figure 11 elucidate that the oligosaccharide and nonoligosaccharide fractions in PSE exhibit similar important roles for the antiobesity effects of PSE. Interestingly, the effects of the nonoligosaccharide fraction of PSE were delayed compared with those of the oligosaccharide fraction. Therefore, we considered whether both oligosaccharide and nonoligosaccharide fractions show those effects by regulating the same signaling pathways. The deep research for this problem should be done in the future.
In summary, we found that PSE exhibits antiobesity effects for obese mice, and the leptin and adiponectin signaling pathways play important roles (Figure 8). PSE may be developed as supplementary functional medical food to treat hyperlipidemia and obesity.
[figure omitted; refer to PDF]Authors’ Contributions
LX, JHQ, and MY designed and directed the experiments and wrote and revised the manuscript. QBW, KYS, and JL did the animal experiments and analysis of action mechanism. LHC did the chemical composition analysis and preparation of nonpolysaccharide and oligosaccharide fractions of PSE and wrote the draft of the chemical analysis part.
Glossary
Abbreviations
ADN:Adiponectin
CD36:Cluster of differentiation 36
FAS:Fatty acid synthase
HFD:High-fat diet
ND:Normal diet
LPN:Leptin
PSE:Peanut skin extract
SCD-1:Stearoyl-CoA desaturase-1
SREBP-1c:Sterol-regulatory element-binding protein-1c.
[1] B. A. Swinburn, G. Sacks, K. D. Hall, K. McPherson, D. T. Finegood, M. L. Moodie, S. L. Gortmaker, "The global obesity pandemic: shaped by global drivers and local environments," The Lancet, vol. 378 no. 9793, pp. 804-814, DOI: 10.1016/s0140-6736(11)60813-1, 2011.
[2] World Health Organization, "Obesity and overweight, fact sheet," . June 2017, http://www.who.int/mediacentre/factsheets/fs311/en/
[3] C. Jin, J. Henao-Mejia, R. A. Flavell, "Innate immune receptors: key regulators of metabolic disease progression," Cell Metabolism, vol. 17 no. 6, pp. 873-882, DOI: 10.1016/j.cmet.2013.05.011, 2013.
[4] M. Heo, D. B. Allison, M. S. Faith, S. K. Zhu, K. R. Fontaine, "Obesity and quality of life: mediating effects of pain and comorbidities," Obesity Research, vol. 11 no. 2, pp. 209-216, DOI: 10.1038/oby.2003.33, 2003.
[5] S. J. Olshansky, D. J. Passaro, R. C. Hershow, J. Layden, B. A. Carnes, J. Brody, L. Hayflick, R. N. Butler, D. B. Allison, D. S. Ludwig, "A potential decline in life expectancy in the United States in the 21st century," The New England Journal of Medicine, vol. 352 no. 11, pp. 1138-1145, DOI: 10.1056/nejmsr043743, 2005.
[6] M. L. D. L. Francisco, R. Ava, "Development of a reversed-phase high performance liquid chromatography (RP-HPLC) procedure for the simultaneous determination of phenolic compounds in peanut skin extracts," Food Chemistry, vol. 117 no. 2, pp. 356-363, DOI: 10.1016/j.foodchem.2009.03.110, 2009.
[7] K. B. Pandey, S. I. Rizvi, "Plant polyphenols as dietary antioxidants in human health and disease," Oxidative Medicine and Cellular Longevity, vol. 2 no. 5,DOI: 10.4161/oxim.2.5.9498, 2009.
[8] R. R. Bansode, P. Randolph, S. Hurley, M. Ahmedna, "Evaluation of hypolipidemic effects of peanut skin-derived polyphenols in rats on Western-diet," Food Chemistry, vol. 135 no. 3, pp. 1659-1666, DOI: 10.1016/j.foodchem.2012.06.034, 2012.
[9] C. S. Yang, X. Wang, G. Lu, S. C. Picinich, "Cancer prevention by tea: animal studies, molecular mechanisms and human relevance," Nature Reviews Cancer, vol. 9 no. 6, pp. 429-439, DOI: 10.1038/nrc2641, 2009.
[10] K. Goszcz, G. G. Duthie, D. Stewart, S. J. Leslie, I. L. Megson, "Bioactive polyphenols and cardiovascular disease: chemical antagonists, pharmacological agents or xenobiotics that drive an adaptive response?," British Journal of Pharmacology, vol. 174 no. 11, pp. 1209-1225, DOI: 10.1111/bph.13708, 2017.
[11] N. Khan, O. Khymenets, M. Urpísardà, S. Tulipani, M. Garcia-Aloy, M. Monagas, X. Mora-Cubillos, R. Llorach, C. Andres-Lacueva, "Cocoa polyphenols and inflammatory markers of cardiovascular disease," Nutrients, vol. 6 no. 2, pp. 844-880, DOI: 10.3390/nu6020844, 2014.
[12] L. Xiang, X. L. Cao, T. Y. Xing, D. Mori, R. Q. Tang, J. Li, L. J. Gao, J. H. Qi, "Mixture of peanut skin extract and fish oil improves memory in mice via modulation of anti-oxidative stress and regulation of BDNF/ERK/CREB signaling pathways," Nutrients, vol. 8,DOI: 10.3390/nu8050256, 2016.
[13] N. E. Kang, H. W. Woo, W. K. Kim, "Peanut sprouts extract ( Arachis hypogaea L.) has anti-obesity effects by controlling the protein expressions of PPAR γ and adiponectin of adipose tissue in rats fed high-fat diet," Nutrition Research and Practice, vol. 8 no. 2, pp. 158-164, DOI: 10.4162/nrp.2014.8.1.158, 2014.
[14] K. Szkudelska, L. Nogowski, T. Szkudelski, "Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes," The Journal of Steroid Biochemistry and Molecular Biology, vol. 113 no. 1-2, pp. 17-24, DOI: 10.1016/j.jsbmb.2008.11.001, 2009.
[15] N. E. Kang, A. W. Ha, J. Y. Kim, W. K. Kim, "Resveratrol inhibits the protein expression of transcription factors related adipocyte differentiation and the activity of matrix metalloproteinase in mouse fibroblast 3T3-L1 preadipocytes," Nutrition Research and Practice, vol. 6 no. 6,DOI: 10.4162/nrp.2012.6.6.499, 2012.
[16] Y. Matsuzawa, T. Funahash, T. Nakamura, "Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive substances," Annals of the New York Academy of Sciences, vol. 892, pp. 146-154, DOI: 10.1111/j.1749-6632.1999.tb07793.x, 1999.
[17] Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, J. M. Friedman, "Positional cloning of the mouse obese gene and its human homologue," Nature, vol. 372 no. 6505, pp. 425-432, DOI: 10.1038/372425a0, 1994.
[18] S. Collins, C. M. Kuhn, A. E. Petro, G. Swick, B. A. Chrunyk, R. S. Surwit, "Role of leptin in fat regulation," Nature, vol. 380 no. 6576,DOI: 10.1038/380677a0, 1996.
[19] Q. Wang, C. Bing, K. Al-Barazanji, D. E. Mossakowaska, X.-M. Wang, D. L. McBay, W. A. Neville, M. Taddayon, L. Pickavance, S. Dryden, M. E. A. Thomas, M. T. McHale, I. S. Gloyer, S. Wilson, R. Buckingham, J. R. S. Arch, P. Trayhurn, G. Williams, "Interactions between leptin and hypothalamic neuropeptide Y neurons in the control of food intake and energy homeostasis in the rat," Diabetes, vol. 46 no. 3, pp. 335-341, DOI: 10.2337/diab.46.3.335, 1997.
[20] L. Yaswen, N. Diehl, M. B. Brennan, U. Hochgeschwender, "Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin," Nature Medicine, vol. 5 no. 9, pp. 1066-1070, DOI: 10.1038/12506, 1999.
[21] Y. J. Kim, S. Bi, "Knockdown of neuropeptide Y in the dorsomedial hypothalamus reverses high-fat diet-induced obesity and impaired glucose tolerance in rats," American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol. 310 no. 2, pp. R134-R142, DOI: 10.1152/ajpregu.00174.2015, 2016.
[22] B. Lee, J. Shao, "Adiponectin and energy homeostasis," Reviews in Endocrine and Metabolic Disorders, vol. 15 no. 2, pp. 149-156, DOI: 10.1007/s11154-013-9283-3, 2014.
[23] Y. Joki, K. Ohashi, D. Yuasa, R. Shibata, M. Ito, K. Matsuo, T. Kambara, Y. Uemura, S. Hayakawa, M. Hiramatsu-Ito, N. Kanemura, H. Ogawa, H. Daida, T. Murohara, N. Ouchi, "FGF21 attenuates pathological myocardial remodeling following myocardial infarction through the adiponectin-dependent mechanism," Biochemical and Biophysical Research Communications, vol. 459 no. 1, pp. 124-130, DOI: 10.1016/j.bbrc.2015.02.081, 2015.
[24] P. Ahlstrom, E. Rai, S. Chakma, H. H. Cho, P. Rengasamy, G. Sweeney, "Adiponectin improves insulin sensitivity via activation of autophagic flux," Journal of Molecular Endocrinology, vol. 59 no. 4, pp. 339-350, DOI: 10.1530/jme-17-0096, 2017.
[25] K. Ohashi, N. Ouchi, Y. Matsuzawa, "Anti-inflammatory and anti-atherogenic properties of adiponectin," Biochimie, vol. 94 no. 4, pp. 2137-2142, DOI: 10.1016/j.biochi.2012.06.008, 2012.
[26] L. Xiang, J. Li, Q. Wang, R. Q. Tang, J. H. Qi, "Leptin gene transfer improves symptoms of type 2 diabetic mice by regulating leptin signaling pathway and insulin resistance of peripheral tissues," Human Gene Therapy, vol. 29 no. 1, pp. 68-76, DOI: 10.1089/hum.2016.174, 2018.
[27] J. L. Fu, Y. Li, I. C. Esangbedo, G. Li, D. Feng, L. J. Li, L. Xu, L. W. Han, M. Y. Li, C. H. Li, S. Gao, M. Li, S. M. Willi, "Circulating osteonectin and adipokine profiles in relation to metabolically healthy obesity in Chinese children: findings from BCAMS," Journal of the American Heart Association, vol. 7 no. 23,DOI: 10.1161/jaha.118.009169, 2018.
[28] A. Daniele, R. Cammarata, M. Masullo, G. Nerone, F. Finamore, M. D'Andrea, F. Pilla, G. Oriani, "Analysis of adiponectin gene and comparison of its expression in two different pig breeds," Obesity, vol. 16 no. 8, pp. 1869-1874, DOI: 10.1038/oby.2008.275, 2008.
[29] R. A. De, M. L. Monaco, M. Capasso, P. Forestieri, V. Pilone, C. Nardelli, P. Buono, A. Daniele, "Adiponectin oligomers as potential indicators of adipose tissue improvement in obese subjects," European Journal of Endocrinology, vol. 169 no. 1, pp. 37-43, DOI: 10.1530/eje-12-1039, 2013.
[30] Y. Matsui, N. Kobayashi, M. Nishikawa, Y. Takakura, "Sequence-specific suppression of mdr1a/1b expression in mice via RNA interference," Pharmaceutical Research, vol. 22 no. 12, pp. 2091-2098, DOI: 10.1007/s11095-005-8178-8, 2005.
[31] L. Xiang, J. Li, Y. Wang, R. Tang, Q. Wang, Q. Wu, J. Qi, "Tetradecyl 2,3-dihydroxybenzoate improves the symptoms of diabetic mice by modulation of insulin and adiponectin signaling pathways," Frontiers in Pharmacology, vol. 8 no. 806, 2017.
[32] Y. C. Chang, M. Y. Yang, S. C. Chen, C. J. Wang, "Mulberry leaf polyphenol extract improves obesity by inducing adipocyte apoptosis and inhibiting preadipocyte differentiation and hepatic lipogenesis," Journal of Functional Foods, vol. 21, pp. 249-262, DOI: 10.1016/j.jff.2015.11.033, 2016.
[33] Z. Wang, J. H. Kim, Y. S. Jang, C. H. Kim, J. Y. Lee, S. S. Lim, "Anti-obesity effect of Solidago virgaurea var. gigantea extract through regulation of adipogenesis and lipogenesis pathways in high-fat diet-induced obese mice (C57BL/6N)," Food & Nutrition Research, vol. 61 no. 1, article 1273479,DOI: 10.1080/16546628.2016.1273479, 2017.
[34] Y. N. Huang, J. H. Qi, L. Xiang, Y. Z. Wang, "Construction of adiponectin-encoding plasmid DNA and overexpression in mice in vivo," Gene, vol. 502 no. 2, pp. 87-93, DOI: 10.1016/j.gene.2012.04.052, 2012.
[35] T. H. Sanders, R. W. McMichael, K. W. Hendrix, "Occurrence of resveratrol in edible peanuts," Journal of Agricultural and Food Chemistry, vol. 48 no. 4, pp. 1243-1246, 2000.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2019 Lan Xiang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/
Abstract
Excessive food intake and metabolic disorder promote obesity and diabetes. In China, peanut skin is used as a herbal medicine to treat hemophilia, thrombocytopenic purpura, and hepatic hemorrhage. In the present study, we demonstrated that peanut skin extract (PSE) safely reduced appetite, body weight, fat tissue, plasma TG and TC, and blood glucose level in mice with diet-induced obesity (DIO). Moreover, the leptin/leptin receptor/neuropeptide Y (NPY) and adiponectin signaling pathways involved in the antiobesity effects of PSE are confirmed through leptin and adiponectin overexpression and leptin receptor silencing in mice. PSE consisted of oligosaccharide and polyphenol in a mass ratio of 45 : 55, and both parts were important for the antiobesity function of PSE. Our results suggested that PSE can be developed as functional medical food to treat metabolic disorders and obesity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
2 Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Hirosawa, Wako, Saitama 3510198, Japan; Department of Biotechnology and Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan