Full text

Turn on search term navigation

Copyright © 2019, Yang et al.; licensee Beilstein-Institut. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A model is proposed to study the diffusion of non-equilibrium minority carriers under the influence of a piezo potential and to calculate the corresponding current–voltage (IV) characteristics of a piezoelectric p–n junction exposed to mechanical loading. An effective solution to describe this non-equilibrium process has been put forward including two concepts: the influence of prestress loading on p–n junctions in a quasi-electrostatic thermal equilibrium and the perturbation of small fields superposed on the obtained quasi-electrostatic solutions. A few useful results are obtained through this loaded p–n junction model. Under a forward-bias voltage, a tensile (compressive) loading raises (reduces) the potential barrier of the space charge zone (SCZ), i.e., produces an equivalent reverse- (forward-) electric voltage on the SCZ. When a piezoelectric p–n junction is exposed to a reverse-bias voltage, the current density monotonically decreases with increasing reverse voltage and gradually approaches saturation. A bigger tensile (compressive) loading produces a smaller (larger) saturation current density. The appearance of an equivalent voltage on the SCZ induced by prestress indicates that the performance of a p–n junction with the piezo effect can be effectively tuned and controlled by mechanical loadings. Meanwhile, numerical results show that a loading location closer to the SCZ produces a stronger effect on the IV characteristics of a piezoelectric p–n junction, implying that the tuning effect of mechanical loadings depends on how much influence of the deformation-induced electric field can reach the SCZ. Furthermore, it is also found that the deformation-induced electric field becomes weak with increasing doping because the higher doping is corresponding to the stronger electric leakage. Thus, the higher mechanical tuning performance on higher doped piezoelectric p–n junctions requires the prestress loadings to be applied closer to the interface of p- and n-zone. This study on a non-equilibrium process of piezoelectric p–n junctions has significance for piezotronics.

Details

Title
Prestress-loading effect on the current–voltage characteristics of a piezoelectric p–n junction together with the corresponding mechanical tuning laws
Author
Yang, Wanli; Fan Shuaiqi; Liang Yuxing; Hu Yuantai
University/institution
U.S. National Institutes of Health/National Library of Medicine
Pages
1833-1843
Publication year
2019
Publication date
2019
Publisher
Beilstein-Institut zur Föerderung der Chemischen Wissenschaften
e-ISSN
21904286
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2310833730
Copyright
Copyright © 2019, Yang et al.; licensee Beilstein-Institut. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.