Full text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The desliming operation to discharge ultrafine particles less than 20 µm prior to concentration by flotation is a common practice in phosphate ores beneficiation plants. The first industrial application for the beneficiation of the phosphate material with particle sizes <44 µm in Brazil was in the Araxá plant concentrator in the beginning of the 1980s. This work shows the comparative flotation results with two different phosphate slime samples (<40 µm) obtained from the Copebras (CMOC International) industrial plant located in Catalão (Goiás state, Brazil), considering a circuit with rougher/cleaner configuration with different columns sizes, as follows: Circuit 1 (rougher—4” diameter column; cleaner—2” diameter column) and circuit 2 (rougher—6” diameter column; cleaner 4” column). The results indicate that better flotation apatite recovery results were achieved for the circuit with higher size columns (6” and 4”). The results can be explained by the application of a cavitation tube in the rougher stage in the 6” column. The improved flotation performance can be attributed to increased probabilities of collision and attachment and the reduced probability of detachment by the small size bubbles generated by the cavitation tube in comparison with the bubbles produced by the porous tube of the 4” column flotation.

Details

Title
A Comparative Study of Different Columns Sizes for Ultrafine Apatite Flotation
Author
Matiolo, Elves; Hudson Jean Bianquini Couto; Michelle Fernanda de Lira Teixeira; Renata Nigri de Almeida; Soares de Freitas, Amanda
Publication year
2019
Publication date
Jul 2019
Publisher
MDPI AG
e-ISSN
2075163X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2311993568
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.