Full text

Turn on search term navigation

© 2019 Casanova-Morales et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Optical tweezers have enabled the exploration of picoNewton forces and dynamics in single–molecule systems such as DNA and molecular motors. In this work, we used optical tweezers to study the folding/unfolding dynamics of the APTSTX1–aptamer, a single-stranded DNA molecule with high affinity for saxitoxin (STX), a lethal neurotoxin. By measuring the transition force during (un)folding processes, we were able to characterize and distinguish the conformational changes of this aptamer in the presence of magnesium ions and toxin. This work was supported by molecular dynamics (MD) simulations to propose an unfolding mechanism of the aptamer–Mg+2 complex. Our results are a step towards the development of new aptamer-based STX sensors that are potentially cheaper and more sensitive than current alternatives.

Details

Title
Structural characterization of the saxitoxin-targeting APTSTX1 aptamer using optical tweezers and molecular dynamics simulations
Author
Casanova-Morales, Nathalie; Figueroa, Nataniel L; Alfaro, Karol; Montenegro, Felipe; Barrera, Nelson P; Maze, J R; Wilson, Christian A M; Conejeros, Pablo
First page
e0222468
Section
Research Article
Publication year
2019
Publication date
Nov 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2312799456
Copyright
© 2019 Casanova-Morales et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.