Abstract

Haemolymph microbiome was considered to be unique to healthy invertebrates and beneficial to the host against external pathogens, including disease resistance and maintenance of homeostasis. Here, we investigated the effects of elevated water temperature on infection of haemolymph microbiome of the hard-shelled mussel (Mytilus coruscus). Exposure to Vibrio. cyclitrophicus resulted in high mortality of mussels on day nine at 27 °C. The haemolymph was collected to determine the microbiota by 16 S rRNA gene sequencing. Exposure to waterborne V. cyclitrophicus increased the mortality of mussels that was associated with a reduction in the diversity of their microbial community. Principal coordinate analysis (PCoA) revealed that temperature was an essential factor in shaping microbial communities in mussel haemolymph. Vibrio exposure promoted the proliferation of opportunistic pathogens (e.g., Arcobacter and Francisella) at a lower temperature. A high abundance of Vibrio present in live and dead mussels, at 27 °C might contribute greatly to mortality, as indicated by linear discriminant analysis effect size (LEfSe). These data suggested that the dynamics of microbial community have unique biomarker species in mussel haemolymph that could be used as health indicators. An elevated temperature may reduce the ability of bacterial elimination function against infection in mussel haemolymph.

Details

Title
Temperature elevation and Vibrio cyclitrophicus infection reduce the diversity of haemolymph microbiome of the mussel Mytilus coruscus
Author
Yi-Feng, Li 1 ; Yan-Wen, Chen 2 ; Jia-Kang, Xu 2 ; Wen-Yang, Ding 2 ; An-Qi, Shao 2 ; You-Ting, Zhu 1 ; Wang, Chong 3 ; Liang, Xiao 1 ; Jin-Long, Yang 1 

 International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China 
 International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China 
 Ocean and Fisheries Research Institute of Binzhou, Binzhou, China 
Pages
1-10
Publication year
2019
Publication date
Nov 2019
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2313063368
Copyright
© 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.