It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A comprehensive study of surface passivation effect on porous fluorescent silicon carbide (SiC) was carried out to elucidate the luminescence properties by temperature dependent photoluminescence (PL) measurement. The porous structures were prepared using an anodic oxidation etching method and passivated by atomic layer deposited (ALD) Al2O3 films. An impressive enhancement of PL intensity was observed in porous SiC with ALD Al2O3, especially at low temperatures. At temperatures below 150 K, two prominent PL emission peaks located at 517 nm and 650 nm were observed. The broad emission peak at 517 nm was attributed to originate from the surface states in the porous structures, which was supported by X-ray photoelectron spectra characterization. The emission peak at 650 nm is due to donor-acceptor-pairs (DAP) recombination via nitrogen donors and boron-related double D-centers in fluorescent SiC substrates. The results of the present work suggest that the ALD Al2O3 films can effectively suppress the non-radiative recombination for the porous structures on fluorescent SiC. In addition, we provide the evidence based on the low-temperature time-resolved PL that the mechanism behind the PL emission in porous structures is mainly related to the transitions via surface states.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 DTU Fotonik, Technical University of Denmark, Ørsteds Plads, Building 345, DK-2800 Kgs., Lyngby, Denmark; Department of Materials Science and Engineering, Meijo University, Tenpaku-ku, Nagoya, Japan
2 DTU Fotonik, Technical University of Denmark, Ørsteds Plads, Building 345, DK-2800 Kgs., Lyngby, Denmark
3 Department of Materials Science and Engineering, Meijo University, Tenpaku-ku, Nagoya, Japan