It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The sequential paradigm of data acquisition and analysis in next-generation sequencing leads to high turnaround times for the generation of interpretable results. We combined a novel real-time read mapping algorithm with fast variant calling to obtain reliable variant calls still during the sequencing process. Thereby, our new algorithm allows for accurate read mapping results for intermediate cycles and supports large reference genomes such as the complete human reference. This enables the combination of real-time read mapping results with complex follow-up analysis. In this study, we showed the accuracy and scalability of our approach by applying real-time read mapping and variant calling to seven publicly available human whole exome sequencing datasets. Thereby, up to 89% of all detected SNPs were already identified after 40 sequencing cycles while showing similar precision as at the end of sequencing. Final results showed similar accuracy to those of conventional post-hoc analysis methods. When compared to standard routines, our live approach enables considerably faster interventions in clinical applications and infectious disease outbreaks. Besides variant calling, our approach can be adapted for a plethora of other mapping-based analyses.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Bioinformatics Division (MF 1), Department for Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
2 Bioinformatics Division (MF 1), Department for Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany; Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, Berlin, Germany; German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, Berlin, Germany