It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The present work is devoted to the study of anisotropic compact matter distributions within the framework of five-dimensional Einstein–Gauss–Bonnet gravity. To solve the field equations, we have considered that the inner geometry is described by Tolman–Kuchowicz spacetime. The Gauss–Bonnet Lagrangian \[\mathcal {L}_{GB}\] is coupled to the Einstein–Hilbert action through a coupling constant, namely \[\alpha \]. When this coupling tends to zero general relativity results are recovered. We analyze the effect of this parameter on the principal salient features of the model, such as energy density, radial and tangential pressure and anisotropy factor. These effects are contrasted with the corresponding general relativity results. Besides, we have checked the incidence on an important mechanism: equilibrium by means of a generalized Tolman–Oppenheimer–Volkoff equation and stability through relativistic adiabatic index and Abreu’s criterion. Additionally, the behavior of the subliminal sound speeds of the pressure waves in the principal directions of the configuration and the conduct of the energy-momentum tensor throughout the star are analyzed employing the causality condition and energy conditions, respectively. All these subjects are illuminated by means of physical, mathematical and graphical surveys. The M–I and the M–R graphs imply that the stiffness of the equation of state increases with \[\alpha \]; however, it is less stiff than GR.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Mathematics, Government General Degree College, Hooghly, West Bengal, India
2 Department of Physics, National Defence Academy, Khadakwasla, Pune, India
3 Departamento de Física, Facultad de ciencias básicas, Universidad de Antofagasta, Antofagasta, Chile