Abstract

The ability to perform wide-range tuning of the magnetic field required to switch the magnetization of ferromagnetic layers with perpendicular magnetic anisotropy is of great importance for many applications. We show that, for (Au/Co)2(3) multilayers, this field can be changed from minus several kOe to plus several kOe because of changes to the coupling with a ferrimagnetic multilayer [either (Tb/Fe)6 or (Tb/Co)6] across a Au spacer (either homogeneous 1 nm thick or wedge-shaped). The adjustable parameters are the ratio of sublayer thicknesses of the ferrimagnet and the sequence of layers around the Au spacer. The change of the sequence from Co/Au/Co to Tb/Au/Co is accompanied by both the reduction of the interaction energy and the change of the magnetic field sign necessary to switch the magnetization of ferromagnetic multilayers. For a 1 nm thick Au spacer this fields change from positive (negative) to negative (positive) if the ferrimagnet is dominated by the transition metal (rare earth) as a result of its composition. The characteristic oscillatory behavior of RKKY-like coupling is demonstrated using a system with a wedge-shaped Au spacer.

Details

Title
Wide-range tuning of interfacial exchange coupling between ferromagnetic Au/Co and ferrimagnetic Tb/Fe(Co) multilayers
Author
Frąckowiak, Łukasz 1 ; Kuświk, Piotr 1 ; Urbaniak, Maciej 1 ; Gabriel David Chaves-O’Flynn 2 ; Stobiecki, Feliks 1 

 Institute of Molecular Physics, Polish Academy of Sciences, Poznan, Poland 
 Institute of Molecular Physics, Polish Academy of Sciences, Poznan, Poland; Westchester Community College, State University of New York, Valhalla, New York, USA 
Pages
1-9
Publication year
2018
Publication date
Nov 2018
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2314540546
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.