It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Circulating tumor cells (CTCs) are receiving a great amount of scientific interest as a diagnostic biomarker for various types of cancer. Despite the recent progress in the development of highly sensitive CTC isolation devices, post-capture analysis of CTCs is still hindered by technical challenges associated with their rarity. Herein, we present a multi-modal CTC screening platform which is capable to analyze CTCs and CTC-derived extracellular vesicles (EVs), simultaneously from a single sample. Cytochalasin B (CB) treatment promotes cells to release large number of EVs from their surface, as demonstrated by CB-treated cells (5 µg/mL for 3 h) secreting 3.5-fold more EVs, compared to the non-treated cells. CB further generates 1.7-fold more EVs from the cells captured on our CTC filtration device (the fabric filter), compared to those from the cell culture flasks, owing to its multiple pore structure design which reduces the non-specific binding of EVs. Both CB-treated cancer cells and CB-induced EVs are found to overexpress tumor-associated markers, demonstrating a potential for the development of CTC dual-screening platform. Collectively, the results presented in this study reveal that our multi-modal cancer screening platform can synergistically improve the reliability and efficacy of the current CTC analysis systems.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Cell Bench Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
2 Cell Bench Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
3 Cell Bench Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Department of Senior Healthcare, BK21 Plus Program, Graduated School, Eulji University, Daejeon, Republic of Korea