Abstract
Background
Figs are key resources for tropical frugivores and display unique fruiting patterns. While monoecious figs support both seeds and wasp rearing, dioecious plants perform the tasks separately and produce seeded figs in smaller asynchronous crops. Thus dioecious females, compared to monoecious figs, may afford to invest more efforts to maximize seediness, or increase fruit pulp, water content, and nutrient rewards to attract frugivores for better seed dispersal. Yet size variation among and within fig species in either breeding system may lead to complicated resource allocation. We assessed fruiting phenology, measured fig morphological traits, and analyzed fig nutrient contents of the monoecious Ficus caulocarpa and F. subpisocarpa and the dioecious F. ampelas and F. irisana in a sympatric tropical forest to investigate species differences and size effects on fig functional traits and their ecological correlates.
Results
All four species fruited nearly year-round. Monoecious figs’ inter-tree asynchronous crops had high peak mature crop sizes over much shorter fruiting periods than dioecious figs. Among trees, F. subpisocarpa and F. irisana were greater in fig-size and size variation, F. caulocarpa and F. ampelas comparatively displayed large variation in fig compositions. As fig size increased, water contents gradually increased in large-fig species, but seediness with a decreasing trend in small-fig species. Dioecious figs had lower pulp-seed ratio but tended to have higher water contents than monoecious figs, particularly within a similar size range. Dioecious figs also had higher carbohydrates, whereas monoecious figs contained higher fiber and lipid contents.
Conclusions
Our study revealed species differences in certain fig functional traits that were correlated with fig size or their breeding systems, with substantial inter-tree variation. This partially supported the predictions regarding their fruiting strategies of aiding seed dispersal by frugivores, yet suggests a fruiting plasticity of individual trees subject to environmental constraints and their biotic interactions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





