It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Molecular factors altered in corneas that develop haze post refractive surgery have been described, but pre-existing factors that predispose clinically normal corneas to aberrant fibrosis post surgery and the role of the corneal epithelium remains unknown. We analyzed the global gene expression in epithelium collected intraoperatively from subjects undergoing photorefractive keratectomy. Subjects were grouped into those that developed haze 12 months post surgery (n = 6 eyes; haze predisposed) and those that did not develop haze in a similar follow up duration (n = 11 eyes; controls). Ontological analysis of 1100 upregulated and 1780 downregulated genes in the haze predisposed group revealed alterations in pathways associated with inflammation, wnt signaling, oxidative stress, nerve functions and extra cellular matrix remodeling. Novel factors such as PREX1, WNT3A, SOX17, GABRA1and PXDN were found to be significantly altered in haze predisposed subjects and those with active haze(n = 3), indicating their pro-fibrotic role. PREX1 was significantly upregulated in haze predisposed subjects. Ectopic expression of PREX1 in cultured human corneal epithelial cells enhanced their rate of wound healing while its ablation using shRNA reduced healing compared to matched controls. Recombinant TGFβ treatment in PREX1 overexpressing corneal cells led to enhanced αSMA expression and Vimentin phosphorylation while the converse was true for shPREX1 expressing cells. Our data identify a few novel factors in the corneal epithelium that may define a patient’s risk to developing post refractive corneal haze.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India; Department of Biomedical Sciences, School of Bio Sciences and Technology, VIT, Vellore, India
2 Cornea and Refractive Surgery Division, Narayana Nethralaya, Bangalore, India
3 Cornea and Refractive Surgery Division, Narayana Nethralaya, Bangalore, India; Singapore Eye Research Institute, Singapore, Singapore
4 Thrombosis Research Institute, Bangalore, India
5 Department of Biomedical Sciences, School of Bio Sciences and Technology, VIT, Vellore, India
6 Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
7 GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
8 Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA; Harry S Truman Veterans’ Memorial Hospital, Columbia, MO, USA
9 GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India; Singapore Eye Research Institute, Singapore, Singapore