It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The CRISPR/Cas9 system has been proposed as a cure strategy for HIV. However, few published guide RNAs (gRNAs) are predicted to cleave the majority of HIV-1 viral quasispecies (vQS) observed within and among patients. We report the design of a novel pipeline to identify gRNAs that target HIV across a large number of infected individuals. Next generation sequencing (NGS) of LTRs from 269 HIV-1-infected samples in the Drexel CARES Cohort was used to select gRNAs with predicted broad-spectrum activity. In silico, D-LTR-P4-227913 (package of the top 4 gRNAs) accounted for all detectable genetic variation within the vQS of the 269 samples and the Los Alamos National Laboratory HIV database. In silico secondary structure analyses from NGS indicated extensive TAR stem-loop malformations predicted to inactivate proviral transcription, which was confirmed by reduced viral gene expression in TZM-bl or P4R5 cells. Similarly, a high sensitivity in vitro CRISPR/Cas9 cleavage assay showed that the top-ranked gRNA was the most effective at cleaving patient-derived HIV-1 LTRs from five patients. Furthermore, the D-LTR-P4-227913 was predicted to cleave a median of 96.1% of patient-derived sequences from other HIV subtypes. These results demonstrate that the gRNAs possess broad-spectrum cutting activity and could contribute to an HIV cure.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
2 Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA; School of Biomedical Engineering and Health Systems, Drexel University, Philadelphia, PA, USA
3 Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA; Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
4 Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA; Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA; Department of Otolaryngology – Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, USA
5 Center for Clinical and Translational Medicine, Institute for Molecular Medicine and Infectious Disease, Philadelphia, PA, USA; Division of Infectious Disease and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
6 Department of Neuroscience and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Department of Medicine, Section of Infectious Disease, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Center for Translational AIDS Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
7 Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA