It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Quantifying the human health risk of microbial infection helps inform regulatory policies concerning pathogens, and the associated public health measures. Estimating the infection risk requires knowledge of the probability of a person being infected by a given quantity of pathogens, and this relationship is modeled using pathogen specific dose response models (DRMs). However, risk quantification for antibiotic-resistant bacteria (ARB) has been hindered by the absence of suitable DRMs for ARB. A new approach to DRMs is introduced to capture ARB and antibiotic-susceptible bacteria (ASB) dynamics as a stochastic simple death (SD) process. By bridging SD with data from bench experiments, we demonstrate methods to (1) account for the effect of antibiotic concentrations and horizontal gene transfer on risk; (2) compute total risk for samples containing multiple bacterial types (e.g., ASB, ARB); and (3) predict if illness is treatable with antibiotics. We present a case study of exposure to a mixed population of Gentamicin-susceptible and resistant Escherichia coli and predict the health outcomes for varying Gentamicin concentrations. Thus, this research establishes a new framework to quantify the risk posed by ARB and antibiotics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 University of California Irvine, Civil and Environmental Engineering, Irvine, United States; University of California Irvine, Center for Complex Biological Sciences, Irvine, United States
2 University of California Irvine, Civil and Environmental Engineering, Irvine, United States