Full text

Turn on search term navigation

© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Sixteen biodiesel cetane number (CN) predictive models developed since the early 1980s have been gathered and compared in order to assess their predictive capability, strengths and shortcomings. All are based on the fatty acid (FA) composition and/or the various metrics derived directly from it, namely, the degree of unsaturation, molecular weight, number of double bonds and chain length. The models were evaluated against a broad set of experimental data from the literature comprising 50 series of measured CNs and FA compositions. It was found that models based purely on compositional structure manifest the best predictive capability in the form of coefficient of determination R2. On the other hand, more complex models incorporating the effects of molecular weight, degree of unsaturation and chain length, although reliable in their predictions, exhibit lower accuracy. Average and maximum errors from each model’s predictions were also computed and assessed.

Details

Title
A Comparative Assessment of Biodiesel Cetane Number Predictive Correlations Based on Fatty Acid Composition
Author
Giakoumis, Evangelos G  VIAFID ORCID Logo  ; Sarakatsanis, Christos K
First page
422
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2316576773
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.