It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The problem of reverse engineering gene regulatory networks from high-throughput expression data is one of the biggest challenges in bioinformatics. In order to benchmark network inference algorithms, simulators of well-characterized expression datasets are often required. However, existing simulators have been criticized because they fail to emulate key properties of gene expression data. In this study, we address two problems. First, we propose mechanisms to faithfully assess the realism of a synthetic gene expression dataset. Second, we design an adversarial simulator of expression data, gGAN, based on a Generative Adversarial Network. We show that our model outperforms existing simulators by a large margin, achieving realism scores that are up to 17 times higher than those of GeneNetWeaver and SynTReN. More importantly, our results show that gGAN is, to our best knowledge, the first simulator that passes the Turing test for gene expression data proposed by Maier et al. (2013).
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer