Full text

Turn on search term navigation

© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to reduce NOx emissions in internal combustion engines, the present work analyzes a measurement which consists of injecting ammonia directly into the combustion chamber. A commercial compression ignition engine fueled with a hydrogen-diesel blend was studied numerically. It was verified that the flow rate shape in which the ammonia was injected, particularly rectangular, triangular, or parabolic, as well as the injection duration had an important influence on NOx reduction. A 11.4% improvement in NOx reduction, corresponding to an overall reduction of 78.2% in NOx, was found for parabolic injection shape and 1º injection duration. The effect on carbon dioxide, carbon monoxide, and hydrocarbon emissions, as well as brake-specific consumption, was negligible.

Details

Title
NOx Reduction in Diesel-Hydrogen Engines Using Different Strategies of Ammonia Injection
Author
Lamas, M I  VIAFID ORCID Logo  ; Rodriguez, C G
First page
1255
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2316761581
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.