Full text

Turn on search term navigation

© 2019 Xing et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Heterogeneity of echo-texture and lack of sharply delineated tissue boundaries in diagnostic ultrasound images make three-dimensional (3D) registration challenging, especially when the volumes to be registered are considerably different due to local changes. We implemented a novel computational method that optimally registers volumetric ultrasound image data containing significant and local anatomical differences. It is A Multi-stage, Multi-resolution, and Multi-volumes-of-interest Volume Registration Method. A single region registration is optimized first for a close initial alignment to avoid convergence to a locally optimal solution. Multiple sub-volumes of interest can then be selected as target alignment regions to achieve confident consistency across the volume. Finally, a multi-resolution rigid registration is performed on these sub-volumes associated with different weights in the cost function. We applied the method on 3D endovaginal ultrasound image data acquired from patients during biopsy procedure of the pelvic floor muscle. Systematic assessment of our proposed method through cross validation demonstrated its accuracy and robustness. The algorithm can also be applied on medical imaging data of other modalities for which the traditional rigid registration methods would fail.

Details

Title
M3VR—A multi-stage, multi-resolution, and multi-volumes-of-interest volume registration method applied to 3D endovaginal ultrasound
Author
Xing, Qi; Chitnis, Parag; Sikdar, Siddhartha; Alshiek, Jonia; S Abbas Shobeiri; Qi, Wei
First page
e0224583
Section
Research Article
Publication year
2019
Publication date
Nov 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2316775470
Copyright
© 2019 Xing et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.