It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Previous work on iris recognition focused on either visible light (VL), near-infrared (NIR) imaging, or their fusion. However, limited numbers of works have investigated cross-spectral matching or compared the iris biometric performance under both VL and NIR spectrum using unregistered iris images taken from the same subject. To the best of our knowledge, this is the first work that proposes a framework for cross-spectral iris matching using unregistered iris images. To this end, three descriptors are proposed namely, Gabor-difference of Gaussian (G-DoG), Gabor-binarized statistical image feature (G-BSIF), and Gabor-multi-scale Weberface (G-MSW) to achieve robust cross-spectral iris matching. In addition, we explore the differences in iris recognition performance across the VL and NIR spectra. The experiments are carried out on the UTIRIS database which contains iris images acquired with both VL and NIR spectra for the same subject. Experimental and comparison results demonstrate that the proposed framework achieves state-of-the-art cross-spectral matching. In addition, the results indicate that the VL and NIR images provide complementary features for the iris pattern and their fusion improves notably the recognition performance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 ComS2IP Group, School of Electrical and Electronic Engineering, Newcastle University, England, UK; Department of Computer and Information Engineering, Ninevah University, Nineveh, Iraq
2 ComS2IP Group, School of Electrical and Electronic Engineering, Newcastle University, England, UK