Full Text

Turn on search term navigation

© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Non–intrusive load monitoring based on power measurements is a promising topic of appliance identification in the research of smart grid; where the key is to avoid the power sub-item measurement in load monitoring. In this paper; a three–step non–intrusive load monitoring system (TNILM) is proposed. Firstly; a one dimension convolution neural network (CNN) is constructed based on the structure of GoogLeNet with 2D convolution; which can zoom in on the differences in features between the different appliances; and then effectively extract various transient features of appliances. Secondly; comparing with various classifiers; the Linear Programming boosting with adaptive weights and thresholds (ALPBoost) is proposed and applied to recognize single–appliance and multiple–appliance. Thirdly; an update process is adopted to adjust and balance the parameters between the one dimension CNN and ALPBoost on–line. The TNILM is tested on a real–world power consumption dataset; which comprises single or multiple appliances potentially operated simultaneously. The experiment result shows the effectiveness of the proposed method in both identification rates.

Details

Title
Non-Intrusive Load Monitoring System Based on Convolution Neural Network and Adaptive Linear Programming Boosting
Author
Chao, Min  VIAFID ORCID Logo  ; Wen, Guoquan; Yang, Zhaozhong; Li, Xiaogang; Li, Binrui
First page
2882
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2316983017
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.