Full Text

Turn on search term navigation

© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In August 2018, the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) project released a new level 3 stratospheric aerosol profile data product derived from nearly 12 years of measurements acquired by the spaceborne Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP). This monthly averaged, gridded level 3 product is based on version 4 of the CALIOP level 1B and level 2 data products, which feature significantly improved calibration that now makes it possible to reliably retrieve profiles of stratospheric aerosol extinction and backscatter coefficients at 532 nm. This paper describes the science algorithm and data handling techniques that were developed to generate the CALIPSO version 1.00 level 3 stratospheric aerosol profile product. Further, we show that the extinction profiles (retrieved using a constant lidar ratio of 50 sr) capture the major stratospheric perturbations in both hemispheres over the last decade resulting from volcanic eruptions, extreme smoke events, and signatures of stratospheric dynamics. Initial assessment of the product by intercomparison with the stratospheric aerosol retrievals from the Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station (ISS) indicates good agreement in the tropical stratospheric aerosol layer (30 N–30 S), where the average difference between zonal mean extinction profiles is typically less than 25 % between 20 and 30 km (CALIPSO biased high). However, differences can exceed 100 % in the very low aerosol loading regimes found above 25 km at higher latitudes. Similarly, there are large differences (100 %) within 2 to 3 km above the tropopause that might be due to cloud contamination issues.

Details

Title
CALIPSO level 3 stratospheric aerosol profile product: version 1.00 algorithm description and initial assessment
Author
Kar, Jayanta 1   VIAFID ORCID Logo  ; Kam-Pui, Lee 1 ; Vaughan, Mark A 2   VIAFID ORCID Logo  ; Tackett, Jason L 2 ; Trepte, Charles R 2 ; Winker, David M 2 ; Lucker, Patricia L 1 ; Getzewich, Brian J 1 

 Science Systems and Applications Inc., Hampton, VA, USA; Science Directorate, NASA Langley Research Center, Hampton, VA, USA 
 Science Directorate, NASA Langley Research Center, Hampton, VA, USA 
Pages
6173-6191
Publication year
2019
Publication date
2019
Publisher
Copernicus GmbH
ISSN
18671381
e-ISSN
18678548
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2317557178
Copyright
© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.