It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Fluorine-19 (19F) magnetic resonance imaging (MRI) of injected perfluorocarbons (PFCs) can be used for the quantification and monitoring of inflammation in diseases such as atherosclerosis. To advance the translation of this technique to the clinical setting, we aimed to 1) demonstrate the feasibility of quantitative 19F MRI in small inflammation foci on a clinical scanner, and 2) to characterize the PFC-incorporating leukocyte populations and plaques. To this end, thirteen atherosclerotic apolipoprotein-E-knockout mice received 2 × 200 µL PFC, and were scanned on a 3 T clinical MR system. 19F MR signal was detected in the aortic arch and its branches in all mice, with a signal-to-noise ratio of 11.1 (interquartile range IQR = 9.5–13.1) and a PFC concentration of 1.15 mM (IQR = 0.79–1.28). Imaging flow cytometry was used on another ten animals and indicated that PFC-labeled leukocytes in the aortic arch and it branches were mainly dendritic cells, macrophages and neutrophils (ratio 9:1:1). Finally, immunohistochemistry analysis confirmed the presence of those cells in the plaques. We thus successfully used 19F MRI for the noninvasive quantification of PFC in atherosclerotic plaque in mice on a clinical scanner, demonstrating the feasibility of detecting very small inflammation foci at 3 T, and advancing the translation of 19F MRI to the human setting.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
2 Division of Angiology, Heart and Vessel Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland
3 Flow Cytometry Facility, Department of Formation and Research, University of Lausanne (UNIL), Epalinges, Switzerland
4 Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne and Geneva, Switzerland