Abstract

Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of ‘co-potentiators’ (combination-potentiators) to rescue CFTR function in some minimal function CFTR mutants. Herein, a screen of ~120,000 drug-like synthetic small molecules identified active co-potentiators of pyrazoloquinoline, piperidine-pyridoindole, tetrahydroquinoline and phenylazepine classes, with EC50 down to ~300 nM following initial structure-activity studies. Increased CFTR chloride conductance by up to 8-fold was observed when a co-potentiator (termed ‘Class II potentiator’) was used with a classical potentiator (‘Class I potentiator’) such as VX-770 or GLPG1837. To investigate the range of CFTR mutations benefitted by co-potentiators, 14 CF-associated CFTR mutations were studied in transfected cell models. Co-potentiator efficacy was found for CFTR missense, deletion and nonsense mutations in nucleotide binding domain-2 (NBD2), including W1282X, N1303K, c.3700A > G and Q1313X (with corrector for some mutations). In contrast, CFTR mutations G85E, R334W, R347P, V520F, R560T, A561E, M1101K and R1162X showed no co-potentiator activity, even with corrector. Co-potentiator efficacy was confirmed in primary human bronchial epithelial cell cultures generated from a N1303K homozygous CF subject. The Class II potentiators identified here may have clinical benefit for CF caused by mutations in the NBD2 domain of CFTR.

Details

Title
Nanomolar-potency ‘co-potentiator’ therapy for cystic fibrosis caused by a defined subset of minimal function CFTR mutants
Author
Puay-Wah Phuan 1 ; Joseph-Anthony, Tan 1 ; Rivera, Amber A 1 ; Zlock, Lorna 2 ; Nielson, Dennis W 3 ; Finkbeiner, Walter E 2 ; Haggie, Peter M 1 ; Verkman, Alan S 4 

 Department of Medicine, University of California, San Francisco, San Francisco, CA, USA 
 Department of Pathology, University of California, San Francisco, San Francisco, CA, USA 
 Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA 
 Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA, USA 
Pages
1-12
Publication year
2019
Publication date
Nov 2019
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2319189251
Copyright
© 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.