It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Retroviral transduction is routinely used to generate cell lines expressing exogenous non-viral genes. Here, we show that human cells transduced to stably express GFP transfer GFP gene to non-transduced cells. This horizontal gene transfer was mediated by a fraction of extracellular membrane vesicles that were released by the transduced cells. These vesicles carried endogenous retroviral envelope protein syncytin 1 and essentially acted as replication-competent retroviruses. The ability to transfer the GFP gene correlated with the levels of syncytin 1 expression in the transduced cells and depended on the fusogenic activity of this protein, substantiating the hypothesis that endogenous syncytin 1 mediates fusion stage in the delivery of extracellular vesicle cargo into target cells. Our findings suggest that testing for replication-competent retroviruses, a routine safety test for transduced cell products in clinical studies, should be also carried out for cell lines generated by retroviral vectors in in vitro studies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Section on Membrane Biology, Eunice Kennedy National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
2 Section of Intercellular Interactions, Eunice Kennedy National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA