It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Magnetic nanomaterials were functionalized with dopamine hydrochloride as the functional reagent to afford a core–shell-type Fe3O4 modified with polydopamine (Fe3O4@PDA) composite, which was used for the adsorption of cadmium ions from an aqueous solution. In addition, the effects of environmental factors on the adsorption capacity were investigated. Furthermore, the adsorption kinetics, isotherm, and thermodynamics of the adsorbents were discussed. Results revealed that the adsorption of cadmium by Fe3O4@PDA reaches equilibrium within 120 min, and kinetic fitting data are consistent with the pseudo-second-order kinetics (R2 > 0.999). The adsorption isotherm of Cd2+ on Fe3O4@PDA was in agreement with the Freundlich model, with the maximum adsorption capacity of 21.58 mg/g. The thermodynamic parameters revealed that adsorption is inherently endothermic and spontaneous. Results obtained from the adsorption–desorption cycles revealed that Fe3O4@PDA exhibits ultra-high adsorption stability and reusability. Furthermore, the adsorbents were easily separated from water under an enhanced external magnetic field after adsorption due to the introduction of an iron-based core. Hence, this study demonstrates a promising magnetic nano-adsorbent for the effective removal of cadmium from cadmium-containing wastewater.
Graphical Abstract
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, China