It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Self-assembled nanocomposite films containing ferroelectric and ferromagnetic phases have attracted enormous research interest because they are the most promising candidates for practical multiferroic applications. However, obtaining a genuine magnetoelectric (ME) coupling effect is still challenging in this research area. To substantially improve the ME effect, new heterostructure designs with efficient strain control between two phases are urgently needed. Herein, a novel three-dimensional (3D) nanocup architecture of a heterostructure film is developed. To establish the unique architecture, a heavily Co, Fe-doped ferroelectric Bi3.25La0.75Ti3O12 (BLT) target was used during the growth of BLT thin films via pulsed laser deposition. Consequently, 3D nanocup-structured CoFe2O4 (CFO) particles formed inside the BLT via spontaneous nucleation and agglomeration. The 3D nanocup BLT-CFO film exhibited magnetically controlled reversible dielectric switching, which is direct evidence of strong ME coupling caused by the efficient interfacial strain coupling and low leakage of the novel nanocup architecture. The obtained results strongly suggest that the 3D nanocup heterostructure film significantly improves the ME coupling effect. In addition, we propose a new paradigm in the architecture design of self-assembled nanocomposite films for diverse multifunctional devices.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
2 Center for Quantum Materials and Superconductivity (CQMS), Department of Physics, Sungkyunkwan University, Suwon, Republic of Korea
3 Department of Electrical Engineering, Gachon University, Seongnam, Republic of Korea
4 Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
5 Max Planck POSTECH/Hsinchu Center for Complex Phase Materials & Department of Physics, POSTECH, Pohang, Republic of Korea
6 Department of Physics, Kunsan National University, Gunsan, Republic of Korea