It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Organic soils drained for crop production or grazing land are agroecosystems with potentially high but variable emissions of nitrous oxide (N2O). The present study investigated the regulation of N2O emissions in a raised bog area drained for agriculture, which is classified as potentially acid sulfate soil. We hypothesised that pyrite (FeS2) oxidation was a potential driver of N2O emissions through microbially mediated reduction of nitrate (
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Agroecology, Aarhus University, Tjele, Denmark
2 Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
3 Applied Statistics Laboratory, Department of Mathematics, Aarhus University, Aarhus, Denmark
4 Geological Survey of Denmark and Greenland, Copenhagen, Denmark