Full text

Turn on search term navigation

Copyright © 2019 Hannah Boehrk et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

The second sharp-edged flight experiment is a faceted suborbital reentry body that enables low-cost in-flight reentry research. Its faceted thermal protection system consisting of only flat radiation-cooled thermal protection panels is cost-efficient since it saves dies, manpower, and storage. The ceramic sharp leading edge has a 1 mm nose radius in order to achieve good aerodynamic behaviour of the vehicle. The maximum temperature measured during flight was 867°C just before transmission ended and was predicted with an accuracy of the order of 10%. The acreage thermal protection system is set up by 3 mm fiber-reinforced ceramic panels isolated by a 27 mm alumina felt from the substructure. The panel gaps are sealed by a ceramic seal. Part of the thermal protection system is an additional transpiration-cooling experiment in which nitrogen is exhausted through a permeable ceramic matrix composite to form a coolant film on the panel. The efficiencies at the maximum heat flux are 58% on the porous sample and 42% and 30% downstream of the sample in the wake. The transient load at each panel location is derived from the trajectory by oblique shock equations and subsequent use of a heat balance for both cooled and uncooled structures. The comparison to the heat balance HEATS reveals heat sinks in the attachment system while the concurrence with the measurement is good with only 8% deviation for the acreage thermal protection system. Aerodynamic control surfaces, i.e., canards, have been designed and made from a hybrid titanium and ceramic matrix composite structure.

Details

Title
Hot Structure Flight Data of a Faceted Atmospheric Reentry Thermal Protection System
Author
Boehrk, Hannah  VIAFID ORCID Logo  ; Weihs, Hendrik; Elsäßer, Henning
Editor
Marco Pizzarelli
Publication year
2019
Publication date
2019
Publisher
John Wiley & Sons, Inc.
ISSN
16875966
e-ISSN
16875974
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2320901456
Copyright
Copyright © 2019 Hannah Boehrk et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/