It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Properties of shale in an acid environment are important when acid or CO2 is injected into geologic formations as a working fluid for enhanced oil and gas recovery, hydraulic fracturing and reduced fracture initiation pressure. It has previously been shown that acid fluids can enhance the formation conductivity and decrease the hardness of shale. However, less is known about the effect of dilute acid on the adhesion properties of shale. In the study, shale samples are characterized in detail with advanced analysis. Adhesion properties of shale via dilute acid treatment were revealed by atomic force microscopy (AFM) for the first time. Results indicate that acid treatment can greatly enhance adhesion forces of the shale surface. After acid treatment, the average adhesion forces show a platform-like growth with an increase in loading force. Through analysis of results from AFM, scanning electron microscopy, and X-ray diffraction, we affirm that the enhanced adhesion forces are mainly from increased specific surface area and reduced elastic modulus. The results presented in this work help understand the adhesion properties of shale oil/gas present in an acidic environment, which have great significance in unconventional resources development.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing, China; Harvard SEAS-CUPB Joint Laboratory on Petroleum Science, Cambridge, MA, USA
2 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing, China