Full Text

Turn on search term navigation

Copyright © 2019 Ha-Kyoung Kwon and Hye-Jin Park. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Phellinus linteus (PL) has been used as a traditional herbal medicine owing to its immune regulatory activity. Previous studies reported that PL grown on germinated brown rice (PBR) exerted immunomodulatory, anticancer, and anti-inflammatory activities. However, role of PBR on type I hypersensitive reactions has not been studied yet. We found that PBR contained more polyphenolic compounds than PL extract. Among fractions, PBR butanol fraction (PBR-BuOH) significantly contained the most amounts of total polyphenolic contents compared with all extracts or fractions. In this study, anti-allergic activity of PBR-BuOH was examined using in vitro and in vivo models of immunoglobulin E/antigen- (IgE/Ag-) stimulated allergy. The inhibitory activity of degranulation was higher in PBR-BuOH (IC50 41.31 ± 0.14 μg/mL) than in PL-BuOH (IC50 108.07 ± 8.98 μg/mL). We observed that PBR-BuOH suppressed calcium influx and the level of TNF-α and IL-4 mRNA expression in a dose-dependent manner. The phosphorylation of Fyn, Gab2, PI3K, Syk, and IκB protein is reduced by PBR-BuOH. Oral administration of PBR-BuOH inhibited allergic reactions including the extravasation of Evans blue dye, ear swelling, and infiltration of immune cells in mice with passive cutaneous anaphylaxis (PCA). These findings suggest that PBR-BuOH might be used as a functional food, a health supplement, or a drug for preventing type I hypersensitive allergic disease.

Details

Title
Phellinus linteus Grown on Germinated Brown Rice Inhibits IgE-Mediated Allergic Activity through the Suppression of FcεRI-Dependent Signaling Pathway In Vitro and In Vivo
Author
Kwon, Ha-Kyoung; Hye-Jin Park  VIAFID ORCID Logo 
Editor
Jae Youl Cho
Publication year
2019
Publication date
2019
Publisher
John Wiley & Sons, Inc.
ISSN
1741427X
e-ISSN
17414288
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2322623895
Copyright
Copyright © 2019 Ha-Kyoung Kwon and Hye-Jin Park. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/