It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The identification of stressfulness under certain driving condition is an important issue for safety, security and health. Sensors and systems have been placed or implemented as wearable devices for drivers. Features are extracted from the data collected and combined to predict symptoms. The challenge is to select the feature set most relevant for stress. In this paper, we propose a feature selection method based on the performance and the diversity between two features. The feature sets selected are then combined using a combinatorial fusion. We also compare our results with other combination methods such as naïve Bayes, support vector machine, C4.5, linear discriminant function (LDF), and k-nearest neighbour (kNN). Our experimental results demonstrate that combinatorial fusion is an efficient approach for feature selection and feature combination. It can also improve the stress recognition rate.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Electronic Engineering and Computer Science, Peking University, Beijing, P.R. China
2 School of Software and Microelectronics, Peking University, Beijing, P.R. China
3 College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, USA
4 Department of Computer and Information Science, Fordham University, New York, NY, USA