It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper presents a vision-aided inertial navigation system for small unmanned aerial vehicles (UAVs) in GPS-denied environments. During visual estimation, image features in consecutive frames are detected and matched to estimate the motion of the vehicle with a homography-based approach. Afterwards, the visual measurement is fused with the output of an inertial measurement unit (IMU) by an indirect extended Kalman filter (EKF). A delay-based approach for the measurement update is developed to introduce the visual measurement into the fusion without state augmentation. This method supposes that the estimated error state is stable and invariant during the second half of one visual calculation period. Simulation results indicate that delay-based navigation can reduce the computational complexity by about 20% compared with general augmented Vision/INS (inertial navigation system) navigation, with almost the same estimate accuracy. Real experiments were also carried out to test the performance of the proposed navigation system by comparison with the augmented filter method and a referential GPS/INS navigation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Robotics Institute, Beihang University, Beijing, China