It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Automatic identification of tissue structures in the analysis of digital tissue biopsies remains an ongoing problem in digital pathology. Common barriers include lack of reliable ground truth due to inter- and intra- reader variability, class imbalances, and inflexibility of discriminative models. To overcome these barriers, we are developing a framework that benefits from a reliable immunohistochemistry ground truth during labeling, overcomes class imbalances through single task learning, and accommodates any number of classes through a minimally supervised, modular model-per-class paradigm. This study explores an initial application of this framework, based on conditional generative adversarial networks, to automatically identify tumor from non-tumor regions in colorectal H&E slides. The average precision, sensitivity, and F1 score during validation was 95.13 ± 4.44%, 93.05 ± 3.46%, and 94.02 ± 3.23% and for an external test dataset was 98.75 ± 2.43%, 88.53 ± 5.39%, and 93.31 ± 3.07%, respectively. With accurate identification of tumor regions, we plan to further develop our framework to establish a tumor front, from which tumor buds can be detected in a restricted region. This model will be integrated into a larger system which will quantitatively determine the prognostic significance of tumor budding.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Wake Forest School of Medicine, Center for Biomedical Informatics, Winston-Salem, USA (GRID:grid.241167.7) (ISNI:0000 0001 2185 3318)
2 The Ohio State University, Department of Pathology, Columbus, USA (GRID:grid.261331.4) (ISNI:0000 0001 2285 7943)